

Single-particle spectroscopy of *exotic nuclei*:

The cases of ²⁵F and ²⁰⁷Hg

Tsz Leung (Ryan) Tang Argonne National Laboratory

Single-particle spectroscopy is a traditional probe. Used for more than 60 years.

Brief introduction to Single-particle spectroscopy

Single-particle spectroscopy

• **Direct reactions** that **ADD/REMOVE** a *single* nucleon.

➡ single step process

- Measure THREE things
 - 1. Energy level,
 - 2. Angular distribution,
 - 3. Yield / Cross section \rightarrow Spectroscopic factor
- The power comes from the SHELL MODEL
 - The total wave function is constructed by *single-particle wave function*

What is mean by single-particle?

The Hamiltonian of a nucleus A

$$H_A = \sum_i -\frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i>j} V_{ij} + \sum_{i>j>k} V_{ijk} + \cdots$$

Mean Field Approximation

residual interaction

$$H_A = \left(\sum_i -\frac{\hbar^2}{2m_i} \nabla_i^2 + \boldsymbol{U}\right) + \left(\sum_{i>j} V_{ij} - \boldsymbol{U}\right) = \sum_i h_i + \sum_{i>j} R_{ij}$$

Single particle state $h_k \phi_{nlj} = \epsilon_{nlj} \phi_{nlj}$ $h_k \phi_{nlj} = \epsilon_{nlj} \phi_{nlj}$ Single particle energy

Connection to single-particle spectroscopy

The Hamiltonian of a nucleus A = B + k

$$H_A = \sum_i h_i + \sum_{i \neq j} V_{ij} = h_k + H_B + V_{kB}$$

Total wave function of the nucleus

$$\Psi_{J_A} = \sum_{B'} \sum_{nlj} \beta_{nlj} (B', A) \begin{bmatrix} \Psi & \Psi \\ \phi_{nlj} \Psi_{J_{B'}} \end{bmatrix}_{J_A}$$

$$S_{nlj}(B,A) = \left| \left\langle \Psi_B \left| a_{nlj}^+ \right| \Psi_A \right\rangle \right|^2 = \left| \beta_{nlj}(B,A) \right|^2$$
$$\left\langle \Psi_B \left| \Psi_A \right\rangle = \beta_{nlj}(B,A)\phi_{nlj}$$

$$h_k \phi_{nlj} = \epsilon_{nlj} \phi_{nlj}$$
$$H_B \Psi_{J_B} = E_{j_B} \Psi_{J_B}$$

$$E_{B}$$

$$\frac{\text{Effective Single particle energy}}{\epsilon_{nlj}} = \frac{\sum_{B} E_j |\beta_{nlj}(B,A)|^2}{\sum_{B} |\beta_{nlj}(B,A)|^2} \quad \begin{array}{l} h_k \phi_{nlj} = \epsilon_{nlj} \phi_{nlj} \\ H_A \Psi_{J_A} = E_{j_A} \Psi_{J_A} \end{array}$$

Intuitive picture via Single-particle spectroscopy

Spectroscopic factor

 $\langle \Psi_B | \Psi_A \rangle = \beta_{nlj}(B, A) \phi_{nlj}$

- Similarity between 2 nuclear systems
- fraction of occupancy

Effective single particle energy

$$\epsilon_{nlj} = \frac{\sum_{B} E_j |\beta_{nlj}(B,A)|^2}{\sum_{B} |\beta_{nlj}(B,A)|^2}$$

Weighted energy

- \rightarrow average out the perturbation by the residual interaction.
- \rightarrow monopole part of the Hamiltonian
- \rightarrow mean field picture.
- \rightarrow extract the spin-orbit splitting & more...

I. Sick, Quasi-free knockout reaction, QFS workshop at ECT, Trento, 2008.

Fast beam case: ${}^{25}F(p,2p){}^{24}O$

Similarity between ²⁵F and ²⁴O + p

Fast beam production

Projectile fragmentation method

- → breaking up heavy nucleus into many light nuclei
- \rightarrow in-flight particle separation

With fast beam, quasi-free (*p*,2*p*) is a natural choice.

Quasi-free (p,2p) is as "clean" as (e,e'p)

11

²⁵F(*p*,2*p*)²⁴O: Oxygen dripline anomaly

Fluorine : 1-proton in sd shell.

 \rightarrow support neutrons up to the p-f shell!

 \rightarrow something interesting from that proton.

²⁵F(p,2p)

• ²⁴O is a doubly magic

 \rightarrow the proton configuration mixing should be minimum.

• Knockout of the proton

ightarrow study the neutron shell

$$S_{nlj}(O,F) = \left| \left\langle \Psi_O \left| a_{nlj} \left| \Psi_F \right\rangle \right|^2 \right|$$
$$= \left| \beta_{nlj}(O,F) \right|^2$$
$$= \left| \left\langle \pi_O \left| a_{nlj} \left| \pi_F \right\rangle \right|^2 \left| \left\langle \nu_O \left| \nu_F \right\rangle \right|^2 \right|$$
proton shell neutron shell

²⁵F beam production (I)

Experimental Result

- (²⁵F,²⁴O) is a single peak from 1d_{5/2} orbital.
- (²⁵F,²³O+n) is from sd-orbit \rightarrow no s-orbital \rightarrow 1d_{5/2} orbital
- Mean energy of (²⁵F,²²O+2n) is ~ 13 MeV
- shell gap between sd and p-shells = 12.7 MeV
 - p-orbital should dominate.

Momentum distribution

24

7.6, (+)

7.4, (-)

 $0.0, 0^+$

Spectroscopic factor and wave function of ²⁵F

Spectroscopic factor =

²⁵F(p,2p)

Residue

²⁴O

 $^{23}O + n$

Exp. Cross Section

Orbital

 $1d_{5/2}$

DWIA Cross Section (PIKOE, K. Ogata *et al.*, Osaka University, Japan)

SF

 0.36 ± 0.13

 0.65 ± 0.25

Optical potential : Microscopic folding potential (Melbourne G-matrix interaction)

Bound state: Woods-Saxon potential $r = 1.27A^{1/3}$ fm, a = 0.67 fm

Double magic

		V
Wave function of $^{25}F =$	$ ^{25}\mathrm{F}\rangle \approx \pi 1d_{5/2}\rangle \otimes (\sqrt{0.36} ^{24})$	$({}^{4}O_{g.s.}) + \sqrt{0.65} {}^{24}O^{*}) + \cdots]$

Core of ${}^{25}F = \sim 35\% {}^{24}O_{q.s.}$ and $\sim 65\% {}^{24}O$ excited states.

Why the G.S. spectroscopic factor is so small?

- In double magic + p nuclei, the quenching is small.
- 1. The proton in ²⁵F is almost stay in $d_{5/2}$ shell. \rightarrow it seems that proton is in SPS
- 2. There are 65% excited ²⁴O in ²⁵F core. \rightarrow something on the neutron side.

Consequence are:

- Increase neutron configuration mixing
- > Disappear of N = 16 magicity.
- Long Fluorine neutron dripline

Can shell model calculations explain the result?

PHYSICAL REVIEW LETTERS 124, 212502 (2020)

How Different is the Core of ²⁵F from ²⁴O_{g.s.} ?

T. L. Tang[®],^{1,2,*} T. Uesaka[®],² S. Kawase[®],^{1,†} D. Beaumel,³ M. Dozono,² T. Fujii,¹ N. Fukuda,² T. Fukunaga,⁴
A. Galindo-Uribarri,⁵ S. H. Hwang,^{6,‡} N. Inabe,² D. Kameda,² T. Kawahara,⁷ W. Kim,⁶ K. Kisamori,¹ M. Kobayashi,¹ T. Kubo,² Y. Kubota,^{1,§} K. Kusaka,² C. S. Lee,¹ Y. Maeda,⁸ H. Matsubara[®],^{2,∥} S. Michimasa,¹ H. Miya,¹ T. Noro,⁴
A. Obertelli,^{2,9,§} K. Ogata[®],^{10,11} S. Ota,¹ E. Padilla-Rodal[®],¹² S. Sakaguchi[®],⁴ H. Sakai,² M. Sasano,² S. Shimoura[®],¹ S. S. Stepanyan,⁶ H. Suzuki,² M. Takaki,¹ H. Takeda,² H. Tokieda,¹ T. Wakasa,⁴ T. Wakui,^{13,¶} K. Yako,¹ Y. Yanagisawa,² J. Yasuda,⁴ R. Yokoyama,¹ K. Yoshida,² K. Yoshida,^{10,**} and J. Zenihiro²

Previews of the Future in Low-Energy Experimental Nuclear

Physics: Postdoctoral Seminar Series

Slow beam case: ${}^{206}Hg(d,p){}^{207}Hg$

Transfer reaction

Solenoidal spectrometer

Inverse Kinematics for transfer reaction

Advantage of inverse kinematics:

- Detection of the residual nucleus
- Smaller KE for the light particle
- Larger spread of θ_{Lab} for $\theta_{cm} \in (0^{\circ}, \sim 30^{\circ})$

Some detectors systems

Energy resolution is challenging...

The Idea of Solenoidal Spectrometer

A.H. Wuosmaa, J.P. Schiffer, B.B. Back, C.J. Lister, K.E. Rehm, NIM A 580 (2007) 1290

without magnetic field

а

7

•

HELIOS in ANL

Decommissioned Magnetic Resonance Imaging device

The (*d*,*p*) reactions with HELIOS

Physics: Postdoctoral Seminar Series

Target degradation with heavy beam

100

time [min]

-15% / hour

80

60

40

Into Terra Incognita.....

²⁰⁸Pb is a cornerstone to our understanding of the **single-particle structure** of heavy nuclei.

Study of ²⁰⁷Hg

- Toward **r-process** for heavy elements
- Evolution of shell-structure along N=127
- NO spectroscopy study of isotones below Pb
 → First measurement on the single-particle state of ²⁰⁷Hg!!!

Weak binding and nuclear structure

C. R. Hoffman et al., PRC89(2014)061305

Is it a universal behavior?

<u>I</u>SOLDE <u>Solenoidal</u> Spectromète

- ISOLDE uses CERN proton beam to create various isotopes
- Boost energy to 10 MeV/u from light to heavy nuclei
- Intensity to 10⁶⁻⁷ pps, high purity for radioactive beam
- ISS is developed by UK group, base on HELIOS concept

MiniBall

ISOLDE Solenoidal Spectrometer

First commission on Sept 2018

Setup at the time of commission

Both the DAQ and the detector are borrowed from ANL.

Helios PCB C

- 4 sides, 6 detectors long
 Detector size, 9×50 mm
- \bullet 700-µm thick (e.g. ~10 MeV protons)
- Φ coverage, 0.48 of 2π
- $\Omega_{detector} = 21 \text{ msr}$
- $\Omega_{array} = 493 \text{ msr}$

heavy beam is used, radiation damage is large

- \rightarrow target degradation,
- → A dedicated 8×8 type-writer target ladder is used.

Target ladder Mechanical: Russell A. Knaack Targets: Matthew D. Gott

J. C. Lighthall et al., Nucl. Instrum. Methods Phys. A 662, 97 (2010)

Bonding Pad

Experimental Result

Resol. ~ 140 keV (FWHM)

Angular Distributions & Spectroscopic Factors

DWBA calculation: Ptolemy

d-channel : A. J. Koning and J. P. Delaroche, Nucl. Phys. A**713**, 231 (2003) p-channel : H. An and C. Cai, PRC **73**, 054605 (2006) Bound state: Woods-Saxon, $r_0 = 1.28$ fm, $a_0 = 0.65$ fm

$E \ (keV)$	l	j^{π}	$n\ell s$	S	χ^2/dof
0	4	$9/2^{+}$	$1g_{9/2}$	0.82(5)	1.3(8)
1197(5)	2	$5/2^{+}$	$2d_{5/2}$	0.47(6)	2.9(1.1)
1600(45) -	4	$\frac{9/2^+}{2^+}$	$\frac{1g_{9/2}}{2}$	0.30(4)	$\frac{1.5(2)}{2}$
	2	$5/2^{+}$	$2d_{5/2}$	0.13(1)	1.4(3)
1810(20) -	4	$\frac{9/2^+}{2^+}$	$1g_{9/2}$	0.93(12)	1.1(1)
	2	$5/2^{+}$	$2d_{5/2}$	0.42(3)	1.3(3)
1960(30)	0	$1/2^{+}$	$3s_{1/2}$	1.00(13)	4.4(2.7)
2335(6)	2	$3/2^{+}$	$2d_{3/2}$	1.00(7)	1.1(9)
2530(20)	4	$7/2^{+}$	$1g_{7/2}$	0.62(6)	1.4(2)

Spin-parity assignment and Spectroscopic factors

* Normalized to $3s_{1/2}$ state.

Connection to r-process

Those isotope could be produced in FRIB era.

PHYSICAL REVIEW LETTERS 124, 062502 (2020)

First Exploration of Neutron Shell Structure below Lead and beyond N = 126

T. L. Tang,¹ B. P. Kay[®],^{1,*} C. R. Hoffman,¹ J. P. Schiffer,¹ D. K. Sharp,² L. P. Gaffney,³ S. J. Freeman,² M. R. Mumpower,^{4,5} A. Arokiaraj,⁶ E. F. Baader,³ P. A. Butler,⁷ W. N. Catford,⁸ G. de Angelis,⁹ F. Flavigny,^{10,11} M. D. Gott,¹ E. T. Gregor,⁹ J. Konki,³ M. Labiche,¹² I. H. Lazarus,¹² P. T. MacGregor,² I. Martel,⁷ R. D. Page,⁷ Zs. Podolyák,⁸ O. Poleshchuk,⁶ R. Raabe,⁶ F. Recchia,^{13,14} J. F. Smith,¹⁵ S. V. Szwec,^{16,17} and J. Yang⁶

Outlook

The future of :

- Single-particle spectroscopy
- Solenoidal spectrometers

Above are only few applications, a lot MORE !!!

and collective motion.

7

The needs of Fast and Slow beams reactions

Study the fullness of orbital

Fast beam knockout

- Deep inelastic scattering.
- No Q-value limitation.
- Simpler reaction mechanism (Impulse approximation)
- High energy \rightarrow less energy loss
 - Solid polarized proton target
 - Thick target technique
 - Beam event-by-event PID & tracking
 - Not everything in vacuum

Slow beam removal

 $(p,d), (d,t), (d,^{3}\text{He})$

- On nuclear surface
- Sometimes limited by Q-value.
 - \rightarrow Beam energy > Q-value
- Easy for neutron removal
- Reaction mechanic is well-understood

Both can extend to Quasi-particle spectroscopy!!!

Future of the Solenoidal Spectrometers

Previews of the Future in Low-Energy Experimental Nuclear Physics: Postdoctoral Seminar Series

New Devices for Solenoidal Spectrometers

SpecMat : Charged particle + Gamma-ray detector Lead by Oleksii Poleshchuk, KU Leuven

X-Y Sensitive Si-detector

Lead by **Robert Page**, University of Liverpool

AT-TPC, Lead by Daniel Bazin, NSCL

Knockout reactions **Transfer reactions** 0 MeV/u 50 MeV/u 100 MeV/u 200 MeV/u 300 MeV/u 400 MeV/u Capture Fission Charge-exchange reactions One-nucleon transfer Secondary fragmentation Fast-beam fission Pair transfer Intermediate-Knockout reactions energy Coulex HI reactions $(2\rho_0)$ **Barrier-energy Coulex** Interaction cross sections Fusion HI-induced pickup Quasi-free scat. Inelastic proton scattering **Deep-inelastic** scattering Coulex (M1 modes and resonances) Weak interaction strength Astrophysical Fission properties Fission fragment correlations reaction rates Skins Spectroscopy of excited states Single-particle degree of freedom **Deep-inelastic scattering** Equation of state Single-particle properties Pairing Low-lying collectivity at high density Skins Collectivity and shapes Matter radii, skins Single-particle properties Heavy elements Intruder states Disentangle proton and neutron Higher-lying modes and in-medium effects (Pygmy and giant resonances) contributions to collectivity Rare isotopes at high spin Skins

Taken from : FRIB400 – The scientific case for the 400 MeV/u Energy Upgrade of FRIB

²⁵F,²⁴O)

(²⁵F.²²O)

60

Summary

Single-particle spectroscopy is an active tool with many applications

most intuitive picture of how nucleon assembly.

But still many new frontiers, 2 examples:

- Fast beam (p, 2p) : study neutron shell of ²⁵F
- Slow beam (d,p) : single-neutron spectroscopy of ²⁰⁷Hg

There are more applications! Solenoidal spectrometers are around the world!

Thank you for your attention!!!

8/6/20