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Abundance Anomalies in Globular Clusters

What is a Globular Cluster?

105 stars gravitationally

bound in a small radius.

Some of the oldest and

brightest objects in the

galaxy.

Ideal testing ground for

theories of stellar, galactic,

and chemical evolution.

47 Tuc next to the small magellanic cloud
https://sci.esa.int/s/AjG4jmw Copyright: Akira Fujii
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Single Stellar Population

Only need to specify initial chemical composition and mass

distribution.
1Gaia Collaboration, Babusiaux, C., van Leeuwen, F., et al. 2018a, A&A, 616,A10
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Abundance Anomalies

A.O.Thygesen et al., Astron.Astrophys.572, A108 (2014)

First discovered in 80’s.

Na-O anticorrelation

appears to be ubiquitous.

Other light element

correlations and

anticorrelations have been

observed.

Are these a result of initial

inhomogeneity in the

cluster material?
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Multiple Stellar Populations

Milone A. P., et al., 2012a, ApJ, 744, 58

∼ 2007 high resolution photometry reveals multiple main

sequences.
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What is a Globular Cluster?

105 stars gravitationally

bound in a small radius.

1Gratton, R., et al. 2019, A&A Rv, 27, 8
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Abundance Anomalies in Globular Clusters

What is a Globular Cluster?

Light element variations

are the defining feature 1.

Enriched material comes

from older generation of

stars.

Nucleosynthesis is

happening in situ.

Carretta, E., et al. 2010, A&A, 516

1Gratton, R., et al. 2019, A&A Rv, 27, 8
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The Role of Nuclear Physics

How is a Globular Cluster?

Where is this enriched

material coming from?

H-burning at 70-80 MK
23Na(p, γ)24Mg only path to

heavier elements.

No environment satisfies

all constrains.

21Na 22Na 23Na

20Ne 21Ne 22Ne
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Gamow Window
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Transfer Reaction

Det.
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Narrow Resonances

Shape of angular distribution. → Many angles, small ∆θ.

Magnitude of cross section. → Absolute scale for data.

Location of the peak → High resolution.
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Magnetic Spectroscopy

Focal Plane Detector

Focal Plane
Target

Beam
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The Role of Nuclear Physics

TUNL

10 MV FN tandem.

p, d, 3He, and 4He beams

readily available.

High resolution 90-90
beamline.

Angles: 3-21◦ in ∆θ = 2◦

steps. ELab = 21 MeV.

A set of 3 NaBr targets

were used.
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The Role of Nuclear Physics

23Na(3He, d)24Mg at 11◦
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The Role of Nuclear Physics

Is 24Mg Really Well Known?

ENSDF 14 years out of

date.

Many levels come from
20Ne(α, γ), needed to be

updated for Q value.

Previous spectrograph

measurements use large

amounts of calibration

states.

Values are too precise due

to deduced gamma ray

energies being fed back

into least squares fit.
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The Role of Nuclear Physics

Energy Calibration

ρ = Ax3 +Bx2 + Cx+D

States selected primarily to avoid closely spaced doublets,

∆E < 10 keV.
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Energy Calibration

States of interest between ∼ 11000− 12000 keV.



ENP 24

The Role of Nuclear Physics

Energies

Our Value: 11823(3) conflicts with previous value of

11831.7(18). 1

Previous energy depends on identity of 11317.
1S. E. Hale et al., PRC 70, 2004
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The Role of Nuclear Physics

Astrophysical Importance

Recommended energy of

11825(3) excludes Hale et

al.

e−Er/kT , means large

impact on rate.

Gamma ray

measurements needed to

verify these findings.

Factor of 5 increase in rate.
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Bayesian Analysis of Transfer

The Need for a Theory

Γp = C2SℓΓsp,ℓ

Information about

ℓ and C2S in

angular

distribution.

Theory needs to

correctly predict

the shape and

magnitude.
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DWBA

Entrance

Transfer

Exit

Assuming a direct reaction

process for
3He+A → d+B.

Distorted-wave Born

approximation.

Distorted-waves describe

the elastic scattering

channels.

Particle occupies a single

particle state.
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Optical Potentials

U(r) = Vc(r; rc)− V f(r; r0, a0)

− i(W − 4aiWs
d

dri
)f(r; ri, ai)

+ (
~

mπc
)2Vso

1

r

d

dr
f(r; rso, aso)σ · ℓ,

f(r; r0, a0) =
1

1 + exp(
r−r0A

1/3
t

a0
)

> 6 free parameters per channel.

Fit to elastic scattering data.
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Elastic Data
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Same beam and

target.

Establish

absolute scale.

Constrain

entrance

parameters.
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Bayesian Analysis of Transfer

Bayesian Inference

In our problem we try to learn about the parameters

θ = {V0, r0, a0, ...}

Compare different ℓ values using evidence P (D), which I’ll

call Zℓ

Observed elastic scattering will give us the posterior (and,

thus, uncertainty) P (θ|Delastic)

1Doing Bayesian Data Analysis, John K. Kruschke
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The Method

Model ComparisonParameter Estimation 
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Elastic Results

Posterior estimated using Markov chain Monte Carlo.

Normalization estimated during fit.
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Discrete and Continuous Ambiguities

Fairly dramatic for our
23Na(3He,3 He) data.

V rn = c

Higher angle data to

remove?

≈ 7% change in inferred

normalization.
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Discrete and Continuous Ambiguities

Fairly dramatic for our
23Na(3He,3 He) data.

V rn = c

Higher angle data to

remove?

≈ 7% change in inferred

normalization. 0 50 100 150

c.m. (deg)
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Making a Choice

In a Bayesian framework we cannot just ignore this.

Strictly enforce the mode that is consistent with the global

data set.

Uniform distribution ±30% of c.
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Results
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Multiple ℓ Values

dσ

dΩExp
= C2S0+2

[

α
dσ

dΩ ℓ=0

+ (1− α)
dσ

dΩ ℓ=2

]

23Na ground state is Jπ = 3/2+.

Mixing seems to occur most often in Jπ = 2+ states

(ℓ = 0 + 2).

Does this mixture imply greater uncertainty for C2S?
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Additional Source of Uncertainty
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132 keV Resonance

11825 keV state has

unknown spin and parity.

Direct measurement upper

limits + indirect proton

widths appear to rule out

ℓ = 0, 1 1.

LUNA recently measured

ωγ at a significance of

< 3σ 2.

Our results focuses on

using just our values with

probabilities for each

possible ℓ value.

1J. M. Cesaratto et al., Phys. Rev. C, 88, 065806

2A. Boeltzig et al., Physics Letters B, 795, 122-128
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Astrophysical Impact
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Summary

Chemical signatures are a defining feature of globular

clusters.

Transfer reactions are essential tools for studying low-lying

resonances.

Destruction of Na via 23Na(p, γ) was previously

underestimated due to error in energy calibration.

Optical potentials impact our ability to assign ℓ values and

extract C2S.

These uncertainties can lead to even larger variations in

the rate.
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Thank You!
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