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Long-Range Plan in Nuclear Science:

1. How did visible matter come into 
being and how did it evolve?

2. How do protons and neutrons 
organize themselves and what 
phenomena emerge?

3. Are the fundamental interactions 
that are basic to the structure of 
matter fully understood?

4. How can the knowledge and 
technical progress provided by 
nuclear physics best be used to 
benefit society? 

P. Cottle, Nature 465 (2010)
http://frib.msu.edu/_files/pdfs/frib_opening_new_frontiers_in_nuclear_science.pdf
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Denissenkov, P., et al., J. Phys. G: Nucl. Part. Phys. 45 055203 (2018)

s-process
• close to stability
• 𝛽-decays before capturing 

additional neutrons
• Nn < 1011 cm-3

p-p chain

i-process
• somewhere in between
• Nn ~ 1015 cm-3
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• combinations of s-process and r-process do not account 
for observed abundances in the Ge-La region (s + r  i)

I. Roederer et al., APJ 821:37 (2016)
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Caley M. Harris, Oslo Workshop 2019

• Neutron density:  1015 cm-3, intermediate between s process, and r process

• Proposed in the 1970s and revived recently to explain observations of 
“strange” abundance distributions (post-AGB, CEMP stars, and RAWDs)

• Requires mixing between H and He layers of the star

• Neutron production: 13C(𝛼,n)16O reaction, like s-process

• 13C replenished via 12C(p,𝛾)13N, then 13N(e+)13C, T1/2(13N) ~ 10 minutes

H
He

C+O core

Modified from A. Spyrou
Denissenkov, P., et al., J. Phys. G: Nucl. Part. Phys. 45 055203 (2018)
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i-process: nuclear data needs

• Reaction flow is a few steps from stability

• Nuclear properties mostly measured except neutron-capture 
reactions
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Nuclear inputs

Masses ✓

β-decay: T1/2, Pn✓

(n,γ) reaction rates 
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NNDC
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Direct Measurement
• Desired targets are too short-lived
• No feasible neutron target
• Not possible for rare isotopes
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Examples:
Oslo Method
b-Oslo Method

Surrogate Method
g-ray strength method

M. Guttormsen et al., NIMA 255, 518 (1987)

M. Guttormsen et al., NIMA 374, 371 (1996)

A. Schiller et al., NIMA 447, 498 (2000)

A.C. Larsen et al., PRC 83, 034315 (2011)

H. Utsunomiya et al., PRC 82, 064610 (2010)

J. Escher et al., PRL 121, 052501 (2018)

A. Spyrou et al., PRL 113, 232502 (2014)
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Hauser – Feshbach

• Nuclear Level Density
Constant T + Fermi gas, back-shifted 
Fermi gas, super-fluid, microscopic

• γ-ray strength function
Generalized Lorentzian, Brink-Axel, 
various tables

• Optical model potential
Phenomenological, Semi-microscopic

95Sr(n,γ)96Sr

Koning and Rochman, Nucl. Data Sheets 113, 2841 (2012)
Hauser and Feshbach, Phys. Rev. 87, 366 (1952)

(n,γ)

γ

(A-1, Z)

(A, Z)
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(n,γ) uncertainties impact heavy element creation
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J. McKay et al., MNRAS 491, 5179–5187 (2020)
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A. Spyrou et al. PRL 113, 232502 (2014)
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β-Oslo collaboration:
• Liddick, Spyrou (MSU)
• Larsen, Guttormsen (Oslo)

A. Spyrou et al. PRL 113, 232502 (2014)



The b-Oslo Method
• Use b-decay to populate the compound nucleus of interest
• Measure excitation energy and γ-ray energy
• Extract level density and γ-ray strength function (external normalizations)

• Three normalization points:
• Low-lying levels (from NNDC)
• Level density at neutron-separation energy (from previous data or from theory)
• Average radiative width or giant dipole resonance (GDR) data

• Calculate “semi-experimental” (n,γ) cross section
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R. Lewis et al., PRC 99, 034604 (2019)

NormalizationUnfolding
Iterative subtraction

γ

P(Eg ,Ex ) ~ r(Ex -Eg )T (Eg )



The Summing NaI(Tl) Detector as a total absorption spectrometer

• Large size, high efficiency γ-ray detector
• Summing of all γ-rays gives the excitation energy
• Segmentation provides information about 

individual γ-rays
• Resolution at 1 MeV – 6%
• Efficiency at 1 MeV – 85% 

A. Richard, Previews of the Future in Low-Energy 
Experimental Nuclear Physics
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Simon, A., et al. NIM A 703 (2013): 16-21

✓ 16x16 inch
✓ 45 mm borehole
✓ 8 segments
✓ 24 PMTs



Total Absorption Spectroscopy: Cartoon Example
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Sensitive to initial excited energies + individual gamma rays! 

TAS = initial excited energies
Segments = individual gamma rays 

SuN total

SuN segments

Cartoon Decay Scheme Energy Spectrum

Slide modified from C. Harris
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Total Absorption Spectroscopy
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Simon, A., et al. NIM A 703 (2013): 16-21

SuN segment
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Simon, A., et al. NIM A 703 (2013): 16-21
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b-Oslo at the NSCL – fast beams
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DSSD 

1mm thick

16 Vertical/Horizontal strips

SuN



Decay of 103Nb, 104mNb
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Qβ- = 8.531 (9) MeV

Sn = 7.461 (13) MeV

Jπ = (4-)

t1/2 = 0.97 (10) s

Qβ- = 5.932 (10) MeV

Sn = 5.466 (12) MeV

Jπ = (5/2+)

t1/2 = 1.5 (2) s



Correlation technique for fast b-decay spectroscopy

A. Richard, Previews of the Future in Low-Energy 
Experimental Nuclear Physics
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A. C. Dombos Dissertation

t1/2 = 1.34 (7) s
Lit. 1.5 (2) st1/2 = 0.97 (10) s

Lit. 0.94 (7) s



Raw Ex vs. Eg Matrix: 104mNb
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• Strongly populated levels 
at ~2MeV and 3MeV 
consistent with known 
data



Unfolded Ex vs. Eg Matrix: 104mNb

• Need to account for the 
interaction of g-rays in the 
detector

• Generate response 
function for SuN in 
GEANT4

• Iterative procedure to 
determine the incoming 
energy

A. Richard, Previews of the Future in Low-Energy 
Experimental Nuclear Physics
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Guttormsen et al., NIMA 255, 518 (1987)

Allison et al., NIMA 835, 186 (2016)



Primary Ex vs. Eg Matrix: 104mNb
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• Isolate the first g-ray to be 
emitted from each excited 
state

• Iterative subtraction of the 
g-rays emitted from lower 
excited states

• When normalized, 
becomes the probability 
matrix needed to extract 
NLD and gSF:

Guttormsen et al., NIMA 374, 371 (1996)

Schiller et al., NIMA 447, 498 (2000)



Normalized Level Densities for 103Mo, 104Mo
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Goriely, Hilaire, and Koning, PRC 78, 064307 (2008) 

Shift value: -0.25 ± 0.25 MeV Shift value: 0.1 ± 0.35 MeV

104Mo103Mo



Spin Reduction from β-decay Selection Rules
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103Mo 104Mo

• From 103Nb – 5/2+

• Spin range: 1/2± - 9/2 ±

• 43% population

• From 104mNb – (4-) 
• Spin range: 2± - 6 ±

• 51% population
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Reduced g-ray Strength Functions for 103Mo, 104Mo
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104Mo103Mo



Comparison to 96-98Mo
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M. Guttormsen, PRC 71, 044307 (2005)
H. Utsunomiya, PRC 88, 015805 (2013)
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M. Guttormsen, PRC 71, 044307 (2005)
H. Utsunomiya, PRC 88, 015805 (2013)



Experimentally constrained cross sections for 
102Mo(n,g)103Mo and 103Mo(n,g)104Mo
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102Mo(n,g)103Mo

103Mo(n,g)104Mo



Experimentally constrained reaction rates for 
102Mo(n,g)103Mo and 103Mo(n,g)104Mo
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102Mo(n,g)103Mo

103Mo(n,g)104Mo



Impact of neutron-capture constraints

• Nucleosynthesis Grid (NuGrid) Collaboration

• Relative difference between constrained rates and non-smoker

• Comparison with CEMP stars underway

A. Richard, Previews of the Future in Low-Energy 
Experimental Nuclear Physics
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Ondrea Clarkson, University of Victoria, NuGrid



i-process sensitivity studies attribute highest impact to 141Ba(n,g)142Ba 

• Recent study by NuGrid highlights the significance of 
141Ba(n,g)142Ba uncertainties on Pr production in CEMP 
stars

A. Richard, Previews of the Future in Low-Energy 
Experimental Nuclear Physics
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Denissenkov, arXiV:2010.15798



SuNTAN at CARIBU

A. Richard, Previews of the Future in Low-Energy 
Experimental Nuclear Physics

34

CARIBU = CAlifornium
Rare Isotope Breeder 

Upgrade

X-Array

MTAS

SuNTAN

CARIBU Stopped 
Beam Stations 



b-Oslo at ANL – stopped beams
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Fiber detector: b detector

Tape Station

• CARIBU + low-energy area
• Nov. 2019: SuNTAN moved to ANL 
• Feb. 2020: Commissioning

141Ba(n,γ)142Ba
• Feb. 2020: First experiment 

87-89Kr(n,γ)88-90Kr 
• Additional experiments delayed due to 

COVID-19



Scintillating Plastic Optical Transport Detector
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▪ 8 panels of scintillating plastic

▪ alternating optical fibers 
transport signal to PMTs

▪ ΔE detector



SuNTAN at ANL – stopped beams
• Tape system for Active Nuclei: SuNTAN

• i-process, nuclear security
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SuNTAN at ANL – stopped beams
• Tape system for Active Nuclei: SuNTAN

• i-process, nuclear security
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Tape Storage
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ANL Commissioning: 141Ba(n,g)142Ba from 142Cs b-decay

• Isolate parent decay and remove daughter contribution
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β-

142Cs → 142Ba
t1/2 = 1.684 (14) s

142Ba → 142La
t1/2 = 10.6(2) min



ANL Commissioning: 141Ba(n,g)142Ba from 142Cs b-decay
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Experiment 
performed at 

ANL in Feb. 2020
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Preliminary nuclear level density and g-ray strength function for 142Ba
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Summary and Outlook
• i-process nucleosynthesis uncertainties are 

dominated by neutron-capture cross sections

• β-Oslo method for constraining neutron-capture 
reactions

• Experimental campaigns at NSCL using fast beams, 
and ANL using stopped beams

• Collaboration with NuGrid to determine the impact 
of our constrained cross sections
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Prospects for b-decay studies at FRIB
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Half-life

Discrete γ Spectroscopy

βn - measurements

TAS

β-Oslo – (n,γ)
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Thank you!
Questions?


