Study of ⁵⁷Zn β-delayed proton emission and its impact on the ⁵⁶Ni rpprocess waiting point

M.Saxena

Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA Email: saxenam@ohio.edu

Type-I X-rays bursts are thermonuclear flashes ignited on the surface of a neutron star which is accreting hydrogen and helium-rich material from its companion star. With an hours-long stellar half-life and a low proton capture Q value, doubly magic ⁵⁶Ni has long been defined as one of the waiting points in the rapid proton capture (rp) process that powers type-I X-ray bursts. However, a strong bypass circumventing ⁵⁶Ni and diverting the rp-process flow through the path ⁵⁵Ni(p, γ)⁵⁶Cu(p, γ)⁵⁷Zn(β^+)⁵⁷Cu(p, γ) ⁵⁸Zn has been proposed [1]. The ⁵⁵Ni(p, γ) and ⁵⁶Cu(p, γ) reaction rates calculated with the recently measured mass of ⁵⁶Cu [2] show that the rp-process flow can redirect around the ⁵⁶Ni waiting point through the ⁵⁵Ni(p, γ) route. However, the dominant source of uncertainty regarding the strength of this bypass is the β^+ - delayed proton emission decay branch of ⁵⁷Zn, having a present estimate of 78±17% [3].

We measured β -delayed proton-emission of ⁵⁷Zn at the National Superconducting Cyclotron Laboratory using implantation in a double-sided silicon strip detector surrounded by a clover array for gamma-coincidences. We substantially improved the precision for the proton-emission branching ratio and identified new γ -ray transitions that each correspond to the exotic β - γ -p decay mode. These results, along with the impact on the rp-process flow will be discussed in the presentation.

References:

3. B. Blank et. al, Eur. Phys J. A, 31 (3) 267-272 (2007)

^{1.} W.-J.Ong et. al, Phy. Rev C 95 055806 (2017).

^{2.} A.A. Valverde et. al, Phy. Rev. Lett. 120, 032701 (2018)