Study of low-lying resonances in ²⁶Si relevant for understanding the nucleosynthesis of Galactic ²⁶Al

Jesus F. Perello

Florida State University, USA E-mail: jfperello@gmail.com

The ²⁵Al(p,γ)²⁶Si reaction is critical in understanding the emission of radioactive ²⁶Al in the Galaxy. The ²⁵Al(p,γ)²⁶Si reaction plays a crucial role in re-directing the flux of nuclear material away from the ²⁶Al^g, observable via its 1.8 MeV gamma-ray line, in favor of its short-lived isomeric state ²⁶Al^m, which bypasses the gamma-ray emission but it is observed in excesses of ²⁶Mg isotopic abundances in meteorites and presolar grains. Uncertainties in the ²⁵Al(p,γ)²⁶Si reaction are dominated by the nuclear properties of low-lying proton-unbound states in ²⁶Si, which determine the reaction rate in a range of astrophysical scenarios.

A high-sensitivity spectroscopy study of the radioactive nucleus ²⁶Si was performed at Florida State University using a neutron/gamma-ray (n/γ) coincidence measurement of the ²⁴Mg(³He, n/γ) reaction. The experiment was carried out at the John D. Fox laboratory at FSU using the newly developed CATRiNA neutron detector system, an array of 16 deuterated liquid scintillators with excellent pulse-shape-discrimination capabilities as well as a structured pulse-height spectrum that allows to perform neutron spectroscopy complementary to the traditional time-of-flight technique. States in ²⁶Si are 'tagged' by the CATRiNA neutron detectors while the subsequent γ -rays are measured using the FSU HPGe Clovers detectors. Results of this measurement will be discussed as well as its astrophysical implications.