

B(E2) measurements in light radioactive nuclei for guiding *ab-initio* calculations Samuel L. Henderson

Questions in Nuclear Structure

- We want to understand the structure of nuclei
- What causes clusters and Halo nuclei?
- Want a fundamental theory to explain structures

Chart of Nuclides

Ab Initio Theory

- From nuclear first principles
 - Nucleon-nucleon interactions
 - Input as potential into Shrödinger equation
- Reality is complex
 - Describing the interaction is difficult
 - Solving the Shrödinger equation directly is impractical
 - Multiple approaches

No-Core Shell-Model Approach

NOTRE DAM

- Start from nucleon interactions
- Include more and more basis states (Nmax)

Courtesy of M. Caprio

No-Core Shell-Model Approach

- Start from nucleon interactions
- Include more and more basis states (Nmax)

No-Core Shell-Model Approach

- Start from nucleon interactions
- Include more and more basis states (Nmax)

No-Core Shell Model Cont.

 The QM Many-Body problem is turned a into linear algebra problem

Courtesy of P. Fasano

Courtesy of Ch. Constantinou

Differences in calculations

- NCSM only one approach of many
- Different approaches can yield divergent results
- Which *first principle* calculation do we trust?

N. M. Parzuchowski et al, PRC 96, 034324 (2017)

Differences in calculations

- Interaction choice causes differences as well
- Green's Function Monte Carlo (GFMC) example in ¹⁰Be
- Not all interactions performed equivalently

Н	AV18	AV18 + UIX	AV18 + IL2	AV18 + IL7	Exp.
$ E_{gs}(0^+) $	50.1(2)	59.5(3)	66.4(4)	64.3(2)	64.98
$E_{x}^{s}(2_{1}^{+})$	2.9(2)	3.5(3)	5.0(4)	3.8(2)	3.37
$E_{x}(2^{+}_{2})$	2.7(2)	3.8(3)	5.8(4)	5.5(2)	5.96
$B(E2; 2_1^+ \to 0^+)$	10.5(3)	17.9(5)	8.1(3)	8.8(2)	9.2(3)
$B(E2; 2^+_2 \to 0^+)$	3.3(2)	0.35(5)	3.3(2)	1.7(1)	0.11(2)
$\Sigma B(E2)$	13.8(4)	18.2(6)	11.4(4)	10.5(3)	9.3(3)

E. A. McCutchan et al PRL103, 192501 (2009)

Differences in calculations

- Interaction choice causes differences as well
- Green's Function Monte Carlo (GFMC) example in ¹⁰Be
- Not all interactions performed equivalently

	AV18	$\Lambda V 18 \pm 1 \Pi V$	$\Lambda V18 \pm 11.2$	$\Lambda V 18 \pm 11.7$	Evn
	Av10	AVIO + UIA	$AV10 \pm IL2$	$AV10 \pm IL7$	Ехр.
$ E_{\rm gs}(0^+) $	50.1(2)	59.5(3)	66.4(4)	64.3(2)	64.98
$E_{x}(2_{1}^{+})$	2.9(2)	3.5(3)	5.0(4)	3.8(2)	3.37
$E_x(2^+_2)$	2.7(2)	3.8(3)	5.8(4)	5.5(2)	5.96
$B(E2; 2_1^+ \to 0^+)$	10.5(3)	17.9(5)	8.1(3)	8.8(2)	9.2(3)
$B(E2; 2_2^+ \to 0^+)$	3.3(2)	0.35(5)	3.3(2)	1.7(1)	0.11(2)
$\Sigma B(E2)$	13.8(4)	18.2(6)	11.4(4)	10.5(3)	9.3(3)

E. A. McCutchan et al PRL103, 192501 (2009)

B(E2) values

- B(E2) is a good candidate to benchmark calculations
 - Reduced electric quadrupole transition probability
 - Sensitive value to calculation choices
 - Theory of EM transitions well understood
 - Connects to nuclear shapes

Chart of Nuclides

Nuclei to measure

- Measuring ⁷Be and ⁸Li
- Light nuclei with potential cluster structures

Nuclei to measure

- Measuring ⁷Be and ⁸Li
- Light nuclei with potential cluster structures

Coulomb excitation schematic

- Goal is to excite purely with EM interaction
- Take advantage of nuclear force short range.

Coulomb Excitation

- Measuring 1st excited state transition
- Both nuclei are mixed M1/E2 transition
- Coulomb Excitation links B(E2) to inelastic cross section
- $\sigma_{E2} = (Z_T e/\hbar v)^2 a^{-2} B(E2) f_{E2}(\xi)$

Coulomb Excitation

- Measuring 1st excited state transition
- Both nuclei are mixed M1/E2 transition
- Coulomb Excitation links B(E2) to inelastic cross section
- $\sigma_{E2} = (Z_T e/\hbar v)^2 a^{-2} B(E2) f_{E2}(\xi)$

ND Nuclear Science Lab (NSL)

Producing ⁷Be at NSL

 FN Tandem Van De Graaff accelerator produced ⁶Li at 34 MeV

TwinSol at the NSL

Radioactive Beam

- Produced via *TwinSol*
- ²H(⁶Li, ⁷Be)n produced 10⁵ pps of ⁷Be over 3.5 days
- ⁷Be secondary beam of 30.4 MeV vs. Coulomb barrier of 39.3 MeV

Radioactive Beam

- Produced via *TwinSol*
- ²H(⁶Li, ⁷Be)n produced 10⁵ pps of ⁷Be over 3.5 days
- ⁷Be secondary beam of 30.4 MeV vs. Coulomb barrier of 39.3 MeV

Particle Identification

• Beam was identified as 85% ⁷Be

Detector Set-up

Experimental Setup

- 1 μ m (1.9 mg/cm²) gold foil
- HPGe clover detectors
- Annular Si detector with 24 ring channels, 8 sectors

Si Detector Segmentation

- Segmentation give us θ and ϕ

Front

¹⁹⁷Au Coulomb Excitation

Doppler Corrected Spectrum

• Final peak with 30(6) counts at 430 keV

Geant Beam Fit

Calculating the B(E2)

- $\sigma_{E2} = (Z_T e/\hbar v)^2 a^{-2} B(E2) f_{E2}(\xi)$
- B(E2; $3/2^{-} \rightarrow 1/2^{-})=26(6)(3) \text{ e}^{2}\text{fm}^{4}$

Results Comparison

- Blue squares = GFMC (A and B: AV18+IL2, C: AV18 +IL7)
- Red circle = NCSM (EM $N^{3}LO$) GFMC NCSM NCSM/RGM Green triangle = NCSM with Our Exp. Value Continuum (EM N³LO) 1/2⁻) [e² fm⁴] formerly NCSM/RGM Additional NCSM calculations 3/2 20 B(E2; were unconverged 10

Convergence Question

Courtesy of P. Fasano *et al.* 2018 Midwest Theory Get-Together

Convergence Question

Courtesy of P. Fasano *et al.* 2018 Midwest Theory Get-Together

Ratio Comparison

- Ratios agree well with each other and experiment
- Using a literature ⁷Li B(E2) value of 8.3(5)

Comparison graph from Henderson et al Phys. Rev. C 99, 064320 (2019)

⁷Be takeaways

- First measurement of ⁷Be was made
- Ab initio calculations in very good agreement with experiment for ratios
- Want to test ratios with additional measurements to see if these results extend to other nuclei

Chart of Nuclides

Nuclei to measure

- Measured ⁸Li next
- How does a neutron affect the situation?

Radioactive Beam

- Primary beam of ⁷Li at 26 MeV
- ⁷Li(⁹Be,⁸Be)⁸Li produced 4x10⁵ particles/s over 5 days
- ⁸Li secondary beam of 23(1) MeV vs Coulomb barrier of 36.4 MeV

Si and LaBr₃ detectors

1. K. Smith et al., Nucl Instruments and Methods in Physics Research Section B 414, 190-194 (2018)

New Experimental Pieces

Experiment Setup

- Annular Si detector
- 22 rings, 16 sectors
- 10 LaBr₃ detectors
 from HAGRiD¹ array

Example ⁸Li spectra

- Absolute γ efficiency was higher for this experiment
- More background counts as well

Final Peak

• 43(14) counts at 983(3) keV

B(E2; $2^+ \rightarrow 1^+$) comparison

- Our value: 1.7(5) e²fm⁴
- Disagrees with previous measurement¹ of 55(15) e²fm⁴
- Older experiment with just particle detectors

1. J. A. Brown et al., Phys. Rev. Letters 66, 19 (1991)

B(E2; $2^+ \rightarrow 1^+$) comparison

- Our value: 1.7(5) e²fm⁴
- Previous measurement of 55(15) e²fm⁴ is not shown¹

- 1. J. A. Brown et al., Phys. Rev. Letters 66, 19 (1991)
- 2. NCSM result: P. Maris et al. Phys. Review C 87, 014327 (2013)
- 3. GFMC result: S. Pastore et al., Phys. Rev. C 87, 035503 (2018)

B(E2)/(eQ)² Ratios

- Different ratio, using available data
- Factor of 2 in calcs.
- Ratios appear more successful
- Not all calculations agree within 1 σ

Li-8 Convergence Behavior

Courtesy of M. Caprio et al (private communication)

L-S Mixing

• In this odd-odd nucleus, multiple ways to create J of a state.

- *Ab initio* decompositions predict roughly 50/50 split of different L-S mixing
- Two state mixing of higher 1⁺ state can reduce expected B(E2)

⁸Li Conclusions

- Ratios improve convergence but ⁸Li calculations still are interaction dependent
- ⁸Li is sensitive to L-S treatment of interaction, ⁷Li and ⁷Be appear more indifferent
- Same L-S dependence also seen when comparing to ⁹Be B(E2; 3/2⁻ → 7/2⁻)
- This heavily mixed 1+ state makes for a challenging calculation

Future Work

- Ab initio calculations have highlighted structural differences between ⁷Be and ⁸Li
- Ab initio results have already improved, hope to provide further assistance
- Could potentially measure ¹²B, also odd-odd

Acknowledgements

- ND People
 - Experimental collaborators Tan Ahn, Patrick O'Malley, Anna Simon, Craig Reingold,
 Alexander Dombos, Sebastian Aguilar, Drew Blankstein, J.J. Kolata, Luis Caves, Shilun Jin
 - Theory collaborators Mark Caprio, Patrick Fasano, Anna McCoy
- Outside Experimental Collaborators
 - CloverShare Collaboration
 - Kate Jones HAGRiD
- Funding Sources
 - Experimental Funding NSF PHY 17-13857, PHY 14-01343, and PHY 14-30152
 - Theory Funding DOE DE-FG02-95ER-40934, DE-FG02-00ER41132 and NRC of Canada
 - Computational Resources NERSC DE-AC02-05CH11231

Backup slides

Extra experimental pictures

Additional Experimental Pictures

Ratio Comparison - 2nd int

– Using a literature ⁷Li value of $8.3(5)^1$

1. H.-G. Voelk and D. Fick, Nucl. Phys. A 530, 475 (1991)

Ratio Comparison - 3rd int.

– Using a literature ⁷Li value of $8.3(5)^1$

1. H.-G. Voelk and D. Fick, Nucl. Phys. A 530, 475 (1991)

7Li and 7Be $B(E2)/(eQ)^2$ conv.

9Be 1st and 2nd B(E2)/eQ conv.

NIVERSITY OF

NOTRE DAME

⁸Li Geant4 beam reproduction

7Be Experimental Distribution in S2 Rings

History Note

- Winther & de Boer developed coupled channel code
- Necessary for more complicated excitations

•

History Note

- Bohr and Mottelson laid theoretical groundwork 1950s
- E2 transitions first link to collective motion

Aage Bohr

Ben Mottleson

Timing Gates

• Took advantage of Si and LaBr₃ detector time resolution

⁷Li (and ¹⁹⁷Au) Coulex

